
 Kontron Embedded Modules GmbH Brunnwiesenstr. 16 D-94469 Deggendorf
Phone: +49 (0) 991/37024-0 Fax: +49 (0) 991/31275

document: < I2CLEU2_3_E510.doc > last changed on 20.12.02 page 1 of 8 pages

Application Note

Related Products littleMOSTER2, LM2P/P (LEU2)

coolMONSTER, CMP/P (LEU2)

coolMONSTER/S, CMP/S (LEU3)

Subject I2C bus on Pentium Slot-CPUs

Document Name I2CLEU2_3_E510.doc

Usage Common

1. REVISION HISTORY

Date Document Name Subjects added, changed, deleted Changed by
20-Dec-02 I2CLEU2_3_E510.DOC Initial release of Application Note H. Bruhn

 Kontron Embedded Modules GmbH Brunnwiesenstr. 16 D-94469 Deggendorf
Phone: +49 (0) 991/37024-0 Fax: +49 (0) 991/31275

document: < I2CLEU2_3_E510.doc > last changed on 20.12.02 page 2 of 8 pages

Application Note

2. TABLE OF CONTENTS

1. REVISION HISTORY... 1

2. TABLE OF CONTENTS... 2

3. GENERAL INFORMATION ABOUT I2C BUS ... 3

3.1. Introduction to I2C Bus... 3

3.2. I2C Bus on Kontron Embedded Modules GmbH Boards... 4

4. ACCESS TO I2C BUS ON PENTIUM SLOT CPU BOARDS ... 5

4.1. Schematics... 5

4.2. Used I2C bus addresses... 5

4.3. Programming information .. 5

4.3.1. Driving the I2C bus lines... 6

4.3.2. PCI configuration port information .. 7

 Kontron Embedded Modules GmbH Brunnwiesenstr. 16 D-94469 Deggendorf
Phone: +49 (0) 991/37024-0 Fax: +49 (0) 991/31275

document: < I2CLEU2_3_E510.doc > last changed on 20.12.02 page 3 of 8 pages

Application Note

3. GENERAL INFORMATION ABOUT I2C BUS

3.1. Introduction to I2C Bus

The Inter-IC bus (I2C) is a two-wired serial bus and provides a sort of small area network between the circuits of
one system and between different systems. Any device with built-in I2C bus interface can be connected to the
system by simply clipping it to the I2C bus. It consists of two bi-directional lines for serial data (I2DAT) and serial
clock (I2CLK). Every device connected can be master or slave, so there is no central master. A device ad-
dressed as a slave during one data transfer could possibly be the master for the next data transfer. Devices are
also free to transmit or receive data during a transfer. The inherent synchronization process in connection with
the wired AND technique allows fast devices to communicate with slower ones.

For each data bit transferred one clock pulse has to be generated. The data on the I2DAT line must be stable
during the high period of the clock. The data lines state can only change when the I2CLK line is low. Data
transfer is entered by a start condition and ended by a stop condition. A high to low transition of the I2DAT line,
while the I2CLK is high, signals the start condition and a low to high transition, while I2CLK is high, indicates the
stop-condition. Data transfer follows the format below:

I2CLK

I2DAT

A1-A7 R/W Ac Databits 1-8 Ac Databits 1-8 Ac ES

After the start condition (S) the slave address byte is sent. This byte consists of seven address bits (A1-A7) and
one direction bit (R/W) with low level indicating a transmission (WRITE) and high level indicating a request for
data (READ).

After the addressing of a slave device the master’s next clock pulse is used for acknowledgement (Ac). During
this acknowledge pulse the I2DAT line has to be pulled down to low by the receiving device. A data transfer is
always terminated by a stop condition (E) generated by the master. However, if the master wants to communi-
cate with another device on the bus it generates another start condition to address another slave without the
necessity of first generating a stop condition.

This was only a short summary concerning the I2C bus. For detailed information (e.g. timing problems, charac-
teristics of devices) refer to I2C bus specifications, data books and specialized textbooks.

 Kontron Embedded Modules GmbH Brunnwiesenstr. 16 D-94469 Deggendorf
Phone: +49 (0) 991/37024-0 Fax: +49 (0) 991/31275

document: < I2CLEU2_3_E510.doc > last changed on 20.12.02 page 4 of 8 pages

Application Note

3.2. I2C Bus on Kontron Embedded Modules GmbH Boards

The I2C bus interface on Kontron Embedded Modules GmbH boards has to be implemented by the customer
via software, which drives the two lines I2DAT and I2CLK, following the I2C bus specifications. The basic hard-
ware to design the software interface is standard on the devices mentioned in this application note.

Note: This kind of interface does not support external masters.

On different Kontron Embedded Modules GmbH boards the two I2C bus lines are not offered on identical
connectors. They are also not driven the same way. Refer to your manual if you’re not sure you’re using the
right connector or pins for your I2C application.

The following schematics show the bus interface and the onboard devices connected to the I2C bus on the spe-
cial Kontron board the application note is related to. Therefore the information herein cannot be used for other
products of Kontron.

 Kontron Embedded Modules GmbH Brunnwiesenstr. 16 D-94469 Deggendorf
Phone: +49 (0) 991/37024-0 Fax: +49 (0) 991/31275

document: < I2CLEU2_3_E510.doc > last changed on 20.12.02 page 5 of 8 pages

Application Note

4. ACCESS TO I2C BUS ON PENTIUM SLOT CPU BOARDS

4.1. Schematics

SCL SDA

GPIO6

GPIO7

VCC

ADR A0h

X6

Pin10

Pin11

EEPROM

I2CLK

I2DAT

Ali M1543C
(south bridge) SCL SDA

ADR B0h

PIC
16620

4.2. Used I2C bus addresses

Device address of EEPROM : 1010 000xb
Device address of PIC16620 : 1011 000xb
Reserved address : 0101 100xb

Attention: These devices are for BIOS-access only; reading from or writing to them may cause data
corruption and system failure.

4.3. Programming information

The I²C Bus signals on these Pentium Slot CPU boards are controlled by two General Purpose I/Os of the PMU
(power management unit PMU M7101) device in the south bridge M1543C (ISA bridge). See source code ex-
ample below how to enable PMU.
If the I/Os are set to be inputs, I2CLK and I2DAT are high because of the pull ups. To drive I2CLK and I2DAT
low one must set GP6/7 to output and set the respective bit in a register of the PMU to 0. The programming
example below shows exactly how the I²C Bus signals can be controlled.

ISA bridge (PMU device M7101)
Bus Device Function

coolMONSTER , coolMONSTER/S
littleMONSTER2

00h 07h 00h

 Kontron Embedded Modules GmbH Brunnwiesenstr. 16 D-94469 Deggendorf
Phone: +49 (0) 991/37024-0 Fax: +49 (0) 991/31275

document: < I2CLEU2_3_E510.doc > last changed on 20.12.02 page 6 of 8 pages

Application Note

4.3.1. Driving the I2C bus lines

These routines are used to drive the I2C bus lines SCL (clock) and SDA (data):

CONFIG_ADDR EQU 0CF8h ; configuration address register
CONFIG_DATA EQU 0CFCh ; configuration data register
CONFIG_ADDR_PMU EQU 8000385Ch ; PCI config cycle to bus 00h, device 02h,

; function 00h, register index 5Ch (make visible/
; hide PMU register – bit2 in reg 5Fh)

CONFIG_ADDR_SET EQU 8000387Ch ; PCI config cycle to bus 00h, device 02h, function 00h,
; register index 7Ch (PMU respectively ISA Bridge)

I2CCLK_MASK EQU 00404000h ; set GPIO6 to output and high (SCL)
I2CDAT_MASK EQU 00808000h ; set GPIO7 to output and high (SDA)
I2CDAT_BIT EQU 01Fh

;------------------------- Make PMU register visible. -----------------------------------

mov eax, CONFIG_ADDR_PMU ; make PMU device visible
call PCI_RegRead ; returns contain of CONFIG_DATA in EBX
and ebx, NOT 04000000h ; set bit 2 in register 5Fh to 0 (0 = PMU enabled)

call PCI_RegWrite ; write back CONFIG_DATA
(delay 150us) ; give 150us delay

;--

I2CLK_low: mov eax, CONFIG_ADDR_SET
call PCI_RegRead ; returns contain of CONFIG_DATA in EBX
or ebx, I2CCLK_MASK ; set GPIO6 to output and low
call PCI_RegWrite

I2CLK_high: mov eax, CONFIG_ADDR_SET
call PCI_RegRead ; returns contain of CONFIG_DATA in EBX
and ebx, NOT I2CCLK_MASK ; set GPIO6 to input (high)
call PCI_RegWrite

I2DAT_low: mov eax, CONFIG_ADDR_SET
call PCI_RegRead ; returns contain of CONFIG_DATA in EBX
or ebx, I2CDAT_MASK ; set GPIO7 to output and low
call PCI_RegWrite

I2DAT_high: mov eax, CONFIG_ADDR_SET
call PCI_RegRead ; returns contain of CONFIG_DATA in EBX
and ebx, NOT I2CDAT_MASK ; set GPIO7 to input (high)
call PCI_RegWrite

Read_I2DAT: mov eax, CONFIG_ADDR_SET
call PCI_RegRead ; returns contain of CONFIG_DATA in EBX
and ebx, NOT I2CDAT_MASK ; set GPIO7 to input
call PCI_RegWrite
call PCI_RegRead ; read I2DAT
shr ebx, I2CDAT_BIT ; I2DAT is now BL[0]

;---------------------------------- Hide PMU register ------------------------------------

mov eax, CONFIG_ADDR_PMU ; hide PMU device
call PCI_RegRead ; returns contain of CONFIG_DATA in EBX
or ebx, 04000000h ; set bit 2 in register 5Fh to 1 (1 = PMU disabled)

call PCI_RegWrite ; write back CONFIG_DATA
(delay 150us) ; give 150us delay

;--

 Kontron Embedded Modules GmbH Brunnwiesenstr. 16 D-94469 Deggendorf
Phone: +49 (0) 991/37024-0 Fax: +49 (0) 991/31275

document: < I2CLEU2_3_E510.doc > last changed on 20.12.02 page 7 of 8 pages

Application Note

4.3.2. PCI configuration port information

The programming of this GPIO requires low-level access to the internal registers of the on chip PCI PMU device
(M7101) respectively ISA bridge device (M1543C). PCI configuration cycles mechanism #1 via port CF8h
(CONFIG_ADDRESS) and CFCh (CONFIG_DATA), are required to modify the internal PMU registers. See
literature for more information on PCI configuration cycles.

• Accessing a PCI function’s configuration port is a four step process:
- Write the target bus number, physical device number, function number and doubleword number to the configuration address port

(CF8h). This must be a 32 bit (doubleWord) access!
- Perform an I/O read from the configuration data port (CFCh)
- Modify the respective bits of the configuration data port (CFCh)
- Perform an I/O write to the configuration data port (CFCh)

• Configuration Address Register at CF8h

31 30 24 23 16 15 11 10 8 7 2 1 0

E
C
D

Reserved Bus Number Device Number Function Register Index
(Doubleword)

00

Bit [1:0] - are reserved and must be zero (because of doubleword register index access)
Bit [7:2] - identify the target doubleword within the target function’s configuration space
Bit [10:8] - identify the target function number within the target physical PCI device
Bit [15:11] - identify the target physical PCI device number
Bit [23:16] - identify the target PCI bus number
Bit [30:24] - are reserved and must be zero
Bit [31] - enable CONFIG_DATA

= 0, CONFIG_DATA register not active
= 1, CONFIG_DATA register active

See literature for more information on PCI configuration cycles.

• Register Index (PMU device respectively ISA bridge)

Index 7Dh
Bit6; Bit7: Direction Control of GPIO[6;7]

= 0, GPIO[6;7] is a General purpose input pin
= 1, GPIO[6;7] is a General purpose output pin

Index 7Eh
Bit6; Bit7: Data Output to GPIO[6;7] when is set as General purpose output pin

Index 7Fh
Bit6; Bit7: Data Input from GPIO[6;7] when is set as General purpose input pin

 Kontron Embedded Modules GmbH Brunnwiesenstr. 16 D-94469 Deggendorf
Phone: +49 (0) 991/37024-0 Fax: +49 (0) 991/31275

document: < I2CLEU2_3_E510.doc > last changed on 20.12.02 page 8 of 8 pages

Application Note

Example: read the CONFIG_DATA register

;---
; Name: PCI_RegRead - read CONFIG_DATA register (32bit)
; Entry: EAX - PCI configuration cycle
; Exit: EBX - data for CONFIG_DATA register
; Modified: EBX
;---

PCI_RegRead PROC NEAR PUBLIC
push dx
mov dx, CONFIG_ADDR ; configuration address register
out dx, eax ; write CONFIG_ADDRESS port
jcxz $+2
mov ebx, eax ; save EAX to EBX

mov dx, CONFIG_DATA ; configuration data register
in eax, dx ; read CONFIG_DATA port
jcxz $+2
xchg eax, ebx ; EBX now holds CONFIG_DATA dword
pop dx

ret
PCI_RegRead ENDP

Example: write the CONFIG_DATA register

;--
; Name: PCI_RegWrite - write CONFIG_DATA register (32bit)
; Entry: EAX - PCI configuration cycle
; EBX - data for CONFIG_DATA register
; Exit: none
; Modified: EBX, DX
;--

PCI_RegWrite PROC NEAR PUBLIC
push dx
mov dx, CONFIG_ADDR ; configuration address register
out dx, eax ; write CONFIG_ADDRESS port
jcxz $+2
xchg eax, ebx ; exchange EAX and EBX

mov dx, CONFIG_DATA ; configuration data register
out dx, eax ; write EAX to CONFIG_DATA port
jcxz $+2
xchg eax, ebx ; exchange EAX and EBX
pop dx

ret
PCI_RegWrite ENDP

NOTE: If one wants to write board independent software, it is good programming practice to search
the ISA bridge device instead of using fix devices. The vendor and device ID of the ISA
bridge are: 10B9h/1533h

NOTE: DO NOT MODIFY ANY OTHER BIT AND REGISTER AS DESCRIBED HERE! THIS COULD
LEAD TO INCORRECT SYSTEM BEHAVIOUR.

